Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.535
Filtrar
1.
Methods Mol Biol ; 2794: 33-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630218

RESUMO

Two-photon FRET (Förster resonance energy transfer) and FLIM (fluorescence lifetime imaging microscopy) enable the detection of FRET changes of fluorescence reporters in deep brain tissues, which provide a valuable approach for monitoring target molecular dynamics and functions. Here, we describe two-photon FRET and FLIM imaging techniques that allow us to visualize endogenous and optogenetically induced cAMP dynamics in living neurons with genetically engineered FRET-based cAMP reporters.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Engenharia Genética , Microscopia de Fluorescência , Neurônios , Fótons
2.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612686

RESUMO

Bis (3',5')-cyclic diguanylic acid (c-di-GMP) is a ubiquitous second messenger that controls several metabolic pathways in bacteria. In Streptomyces, c-di-GMP is associated with morphological differentiation, which is related to secondary metabolite production. In this study, we identified and characterized a diguanylate cyclase (DGC), CdgB, from Streptomyces diastatochromogenes 1628, which may be involved in c-di-GMP synthesis, through genetic and biochemical analyses. To further investigate the role of CdgB, the cdgB-deleted mutant strain Δ-cdgB and the cdgB-overexpressing mutant strain O-cdgB were constructed by genetic engineering. A phenotypic analysis revealed that the O-cdgB colonies exhibited reduced mycelium formation, whereas the Δ-cdgB colonies displayed wrinkled surfaces and shriveled mycelia. Notably, O-cdgB demonstrated a significant increase in the toyocamycin (TM) yield by 47.3%, from 253 to 374 mg/L, within 10 days. This increase was accompanied by a 6.7% elevation in the intracellular concentration of c-di-GMP and a higher transcriptional level of the toy cluster within four days. Conversely, Δ-cdgB showed a lower c-di-GMP concentration (reduced by 6.2%) in vivo and a reduced toyocamycin production (decreased by 28.9%, from 253 to 180 mg/L) after 10 days. In addition, S. diastatochromogenes 1628 exhibited a slightly higher inhibitory effect against Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani compared to Δ-cdgB, but a lower inhibition rate than that of O-cdgB. The results imply that CdgB provides a foundational function for metabolism and the activation of secondary metabolism in S. diastatochromogenes 1628.


Assuntos
Streptomyces , Toiocamicina , Sistemas do Segundo Mensageiro , Engenharia Genética , Streptomyces/genética
3.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612706

RESUMO

Colorectal cancer (CRC) is a serious global health concern, and researchers have been investigating different strategies to prevent, treat, or support conventional therapies for CRC. This review article comprehensively covers CRC therapy involving wild-type bacteria, including probiotics and oncolytic bacteria as well as genetically modified bacteria. Given the close relationship between CRC and the gut microbiota, it is crucial to compile and present a comprehensive overview of bacterial therapies used in the context of colorectal cancer. It is evident that the use of native and engineered probiotics for colorectal cancer therapy necessitates research focused on enhancing the therapeutic properties of probiotic strains.. Genetically engineered probiotics might be designed to produce particular molecules or to target cancer cells more effectively and cure CRC patients.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Probióticos , Humanos , Engenharia Genética , Probióticos/uso terapêutico , Pesquisadores , Neoplasias Colorretais/terapia
4.
Microbiologyopen ; 13(2): e1406, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556942

RESUMO

Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.


Assuntos
Biotecnologia , Engenharia Genética , Biotecnologia/métodos , Técnicas Genéticas , Genômica , Biologia Sintética
5.
Methods Mol Biol ; 2782: 195-208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38622404

RESUMO

As part of the adaptive immune system, T cells are critical to maintain immune homeostasis. T cells provide protective immunity by killing infected cells and combatting cancerous cells. To do so, T cells produce and secrete effector molecules, such as granzymes, perforin, and cytokines such as tumor necrosis factor α and interferon γ. However, in immune suppressive environments, such as tumors, T cells gradually lose the capacity to perform their effector function. One way T cell effector function can be enhanced is through genetic engineering with tools such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9). This protocol explains in a step-by-step fashion how to perform a controlled electroporation-based CRISPR experiment to enhance human T cell effector function. Of note, these steps are suitable for CRISPR-mediated genome editing in T cells in general and can thus also be used to study proteins of interest that do not influence T cell effector function.


Assuntos
Sistemas CRISPR-Cas , Linfócitos T , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Engenharia Genética/métodos , Citocinas/genética
6.
Methods Mol Biol ; 2760: 371-392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468099

RESUMO

Genetic engineering has revolutionized our ability to manipulate DNA and engineer organisms for various applications. However, this approach can lead to genomic instability, which can result in unwanted effects such as toxicity, mutagenesis, and reduced productivity. To overcome these challenges, smart design of synthetic DNA has emerged as a promising solution. By taking into consideration the intricate relationships between gene expression and cellular metabolism, researchers can design synthetic constructs that minimize metabolic stress on the host cell, reduce mutagenesis, and increase protein yield. In this chapter, we summarize the main challenges of genomic instability in genetic engineering and address the dangers of unknowingly incorporating genomically unstable sequences in synthetic DNA. We also demonstrate the instability of those sequences by the fact that they are selected against conserved sequences in nature. We highlight the benefits of using ESO, a tool for the rational design of DNA for avoiding genetically unstable sequences, and also summarize the main principles and working parameters of the software that allow maximizing its benefits and impact.


Assuntos
Engenharia Genética , Instabilidade Genômica , Humanos , DNA/genética , Proteínas/genética
7.
Biotechnol Adv ; 72: 108343, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521283

RESUMO

Genome engineering has revolutionized several scientific fields, ranging from biochemistry and fundamental research to therapeutic uses and crop development. Diverse engineering toolkits have been developed and used to effectively modify the genome sequences of organisms. However, there is a lack of extensive reviews on genome engineering technologies based on mobile genetic elements (MGEs), which induce genetic diversity within host cells by changing their locations in the genome. This review provides a comprehensive update on the versatility of MGEs as powerful genome engineering tools that offers efficient solutions to challenges associated with genome engineering. MGEs, including DNA transposons, retrotransposons, retrons, and CRISPR-associated transposons, offer various advantages, such as a broad host range, genome-wide mutagenesis, efficient large-size DNA integration, multiplexing capabilities, and in situ single-stranded DNA generation. We focused on the components, mechanisms, and features of each MGE-based tool to highlight their cellular applications. Finally, we discussed the current challenges of MGE-based genome engineering and provided insights into the evolving landscape of this transformative technology. In conclusion, the combination of genome engineering with MGE demonstrates remarkable potential for addressing various challenges and advancing the field of genetic manipulation, and promises to revolutionize our ability to engineer and understand the genomes of diverse organisms.


Assuntos
Edição de Genes , Engenharia Genética , Mutagênese , Sequências Repetitivas Dispersas , Sistemas CRISPR-Cas/genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-38490746

RESUMO

Design of experiments (DoE) is a term used to describe the application of statistical approaches to interrogate the impact of many variables on the performance of a multivariate system. It is commonly used for process optimization in fields such as chemical engineering and material science. Recent advances in the ability to quantitatively control the expression of genes in biological systems open up the possibility to apply DoE for genetic optimization. In this review targeted to genetic and metabolic engineers, we introduce several approaches in DoE at a high level and describe instances wherein these were applied to interrogate or optimize engineered genetic systems. We discuss the challenges of applying DoE and propose strategies to mitigate these challenges. ONE-SENTENCE SUMMARY: This is a review of literature related to applying Design of Experiments for genetic optimization.


Assuntos
Engenharia Genética , Redes e Vias Metabólicas , Redes e Vias Metabólicas/genética , Engenharia Metabólica
9.
World J Microbiol Biotechnol ; 40(4): 130, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460032

RESUMO

ß-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable ß-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic ß-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.


Assuntos
Bactérias , beta-Manosidase , beta-Manosidase/química , Bactérias/metabolismo , Engenharia Genética , Biotecnologia/métodos , Mananas/química , Bioengenharia
10.
GM Crops Food ; 15(1): 40-50, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38471133

RESUMO

Since the first genetically engineered or modified crops or organisms (GMO) were approved for commercial production in 1995, no new GMO has been proven to be a hazard or cause harm to human consumers. These modifications have improved crop efficiency, reduced losses to insect pests, reduced losses to viral and microbial plant pathogens and improved drought tolerance. A few have focused on nutritional improvements producing beta carotene in Golden Rice. Regulators in the United States and countries signing the CODEX Alimentarius and Cartagena Biosafety agreements have evaluated human and animal food safety considering potential risks of allergenicity, toxicity, nutritional and anti-nutritional risks. They consider risks for non-target organisms and the environment. There are no cases where post-market surveillance has uncovered harm to consumers or the environment including potential transfer of DNA from the GMO to non-target organisms. In fact, many GMOs have helped improve production, yield and reduced risks from chemical insecticides or fungicides. Yet there are generic calls to label foods containing any genetic modification as a GMO and refusing to allow GM events to be labeled as organic. Many African countries have accepted the Cartagena Protocol as a tool to keep GM events out of their countries while facing food insecurity. The rationale for those restrictions are not rational. Other issues related to genetic diversity, seed production and environmental safety must be addressed. What can be done to increase acceptance of safe and nutritious foods as the population increases, land for cultivation is reduced and energy costs soar?


Assuntos
Ração Animal , Produtos Agrícolas , Animais , Humanos , Plantas Geneticamente Modificadas/genética , Medição de Risco/métodos , Produtos Agrícolas/genética , Engenharia Genética
11.
Int J Clin Pract ; 2024: 6638269, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495751

RESUMO

The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.


Assuntos
Bactérias , Engenharia Genética , Humanos , Engenharia Genética/métodos , Bactérias/genética , Antibacterianos , Resistência Microbiana a Medicamentos
12.
J Nanobiotechnology ; 22(1): 104, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468289

RESUMO

Modulating macrophages presents a promising avenue in tumor immunotherapy. However, tumor cells have evolved mechanisms to evade macrophage activation and phagocytosis. Herein, we introduced a bispecific antibody-based nanoengager to facilitate the recognition and phagocytosis of tumor cells by macrophages. Specifically, we genetically engineered two single chain variable fragments (scFv) onto cell membrane: anti-CD40 scFv for engaging with macrophages and anti-Claudin18.2 (CLDN18.2) scFv for interacting with tumor cells. These nanoengagers were further constructed by coating scFv-anchored membrane into PLGA nanoparticle core. Our developed nanoengagers significantly boosted immune responses, including increased recognition and phagocytosis of tumor cells by macrophages, enhanced activation and antigen presentation, and elevated cytotoxic T lymphocyte activity. These combined benefits resulted in enhancing antitumor efficacy against highly aggressive "cold" pancreatic cancer. Overall, this study offers a versatile nanoengager design for immunotherapy, achieved through genetically engineering to incorporate antibody-anchored membrane.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/terapia , Imunoterapia/métodos , Engenharia Genética , Linfócitos T Citotóxicos , Claudinas
13.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474018

RESUMO

Early gene therapy studies held great promise for the cure of heritable diseases, but the occurrence of various genotoxic events led to a pause in clinical trials and a more guarded approach to progress. Recent advances in genetic engineering technologies have reignited interest, leading to the approval of the first gene therapy product targeting genetic mutations in 2017. Gene therapy (GT) can be delivered either in vivo or ex vivo. An ex vivo approach to gene therapy is advantageous, as it allows for the characterization of the gene-modified cells and the selection of desired properties before patient administration. Autologous cells can also be used during this process which eliminates the possibility of immune rejection. This review highlights the various stages of ex vivo gene therapy, current research developments that have increased the efficiency and safety of this process, and a comprehensive summary of Human Immunodeficiency Virus (HIV) gene therapy studies, the majority of which have employed the ex vivo approach.


Assuntos
Infecções por HIV , HIV , Humanos , HIV/genética , Vetores Genéticos , Terapia Genética , Engenharia Genética , RNA
14.
Artigo em Inglês | MEDLINE | ID: mdl-38439699

RESUMO

The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production. ONE-SENTENCE SUMMARY: This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.


Assuntos
Produtos Biológicos , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Sistemas CRISPR-Cas , Engenharia Genética , Genoma Bacteriano , Produtos Biológicos/metabolismo , Edição de Genes
15.
Cell Syst ; 15(3): 264-274.e9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460522

RESUMO

Functionalizing materials with biomacromolecules such as enzymes has broad applications in biotechnology and biomedicine. Here, we introduce a grafting method mediated by living cells to functionalize materials. We use polymeric scaffolds to trap engineered bacteria and micron-sized particles with chemical groups serving as active sites for grafting. The bacteria synthesize the desired protein for grafting and autonomously lyse to release it. The released functional moieties are locally grafted onto the active sites, generating the materials engineered by living grafting (MELGs). MELGs are resilient to perturbations because of both the bonding and the regeneration of functional domains synthesized by living cells. The programmability of the bacteria enables us to fabricate MELGs that can respond to external input, decompose a pollutant, reconstitute synthetic pathways for natural product synthesis, and purify mismatched DNA. Our work establishes a bacteria-assisted grafting strategy to functionalize materials with a broad range of biological activities in an integrated, flexible, and modular manner. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Biotecnologia , Engenharia Genética , Proteínas , Biologia Sintética , Bactérias/genética
16.
Appl Microbiol Biotechnol ; 108(1): 270, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512481

RESUMO

Thermophilic cyanobacteria are prokaryotic photoautotrophic microorganisms capable of growth between 45 and 73 °C. They are typically found in hot springs where they serve as essential primary producers. Several key features make these robust photosynthetic microbes biotechnologically relevant. These are highly stable proteins and their complexes, the ability to actively transport and concentrate inorganic carbon and other nutrients, to serve as gene donors, microbial cell factories, and sources of bioactive metabolites. A thorough investigation of the recent progress in thermophilic cyanobacteria reveals a significant increase in the number of newly isolated and delineated organisms and wide application of thermophilic light-harvesting components in biohybrid devices. Yet despite these achievements, there are still deficiencies at the high-end of the biotechnological learning curve, notably in genetic engineering and gene editing. Thermostable proteins could be more widely employed, and an extensive pool of newly available genetic data could be better utilised. In this manuscript, we attempt to showcase the most important recent advances in thermophilic cyanobacterial biotechnology and provide an overview of the future direction of the field and challenges that need to be overcome before thermophilic cyanobacterial biotechnology can bridge the gap with highly advanced biotechnology of their mesophilic counterparts. KEY POINTS: • Increased interest in all aspects of thermophilic cyanobacteria in recent years • Light harvesting components remain the most biotechnologically relevant • Lack of reliable molecular biology tools hinders further development of the chassis.


Assuntos
Biotecnologia , Cianobactérias , Cianobactérias/genética , Cianobactérias/metabolismo , Engenharia Genética , Edição de Genes , Fotossíntese
17.
Compr Rev Food Sci Food Saf ; 23(2): e13321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517033

RESUMO

Huangjiu, a well-known conventional fermented Chinese grain wine, is widely consumed in Asia for its distinct flavor. Trace amounts of ethyl carbamate (EC) may be generated during the fermentation or storage process. The International Agency for Research on Cancer elevated EC to a Class 2A carcinogen, so it is necessary to regulate EC content in Huangjiu. The risk of intake of dietary EC is mainly assessed through the margin of exposure (MOE) recommended by the European Food Safety Authority, with a smaller MOE indicating a higher risk. Interventions are necessary to reduce EC formation. As urea, one of the main precursors of EC formation in Huangjiu, is primarily produced by Saccharomyces cerevisiae through the catabolism of arginine, the construction of dominant engineered fermentation strains is a favorable trend for the future production and application of Huangjiu. This review summarized the formation and carcinogenic mechanism of EC from the perspectives of precursor substances, metabolic pathways after ingestion, and risk assessment. The methods of constructing dominant S. cerevisiae strains in Huangjiu by genetic engineering technology were reviewed, which provided an important theoretical basis for reducing EC content and strengthening practical control of Huangjiu safety, and the future research direction was prospected.


Assuntos
Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Uretana/análise , Uretana/metabolismo , Engenharia Genética , China
18.
Nat Commun ; 15(1): 2096, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453913

RESUMO

Sophisticated gene circuits built by synthetic biology can enable bacteria to sense their environment and respond predictably. Engineered biosensing bacteria outfitted with such circuits can potentially probe the human gut microbiome to prevent, diagnose, or treat disease. To provide robust biocontainment for engineered bacteria, we devised a Cas9-assisted auxotrophic biocontainment system combining thymidine auxotrophy, an Engineered Riboregulator (ER) for controlled gene expression, and a CRISPR Device (CD). The CD prevents the engineered bacteria from acquiring thyA via horizontal gene transfer, which would disrupt the biocontainment system, and inhibits the spread of genetic elements by killing bacteria harboring the gene cassette. This system tunably controlled gene expression in the human gut commensal bacterium Bacteroides thetaiotaomicron, prevented escape from thymidine auxotrophy, and blocked transgene dissemination. These capabilities were validated in vitro and in vivo. This biocontainment system exemplifies a powerful strategy for bringing genetically engineered microorganisms safely into biomedicine.


Assuntos
Sistemas CRISPR-Cas , Contenção de Riscos Biológicos , Humanos , Sistemas CRISPR-Cas/genética , Engenharia Genética , Bactérias/genética , Timidina
19.
Methods Mol Biol ; 2774: 85-98, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38441760

RESUMO

Genetic circuit engineering has emerged as a powerful methodology to program the behavior of mammalian cells to respond to internal and external cues. This approach is now used to develop new therapeutics and improve production processes. However, genetic interaction networks are complex and hard to engineer rationally. Moreover, a design may fail, and it may not be possible to identify the root cause of its breakdown. Introducing designated regulatory circuitry in the form of integral feedback can introduce performance guarantees by ensuring robust and precise operation.


Assuntos
Sinais (Psicologia) , Redes Reguladoras de Genes , Animais , Retroalimentação , Engenharia Genética , Mamíferos
20.
Front Biosci (Elite Ed) ; 16(1): 5, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38538521

RESUMO

Fungal cellulases are the most sought-after biological molecules produced from microbial sources in the last four decades. Owing to their emerging applications in the bioenergy industry for hydrolyzing cellulose, for which they are the most abundant source on this planet, research trends are shifting heavily toward adapting to submerged fermentation. However, filamentous fungal species, which are efficient cellulase producers, are well-adapted to low-moisture solid support as the substrate, such as in nature. Therefore, various fermentation strategies are currently being investigated to adapt them to submerged fermentation for large and high-quality production of cellulases. Emerging research trends, such as the use of inexpensive feedstocks, nutrient and/or culture optimization, innovative bioreactor designs, microparticle-assisted fungal growth, and innovative genetic engineering approaches, are some of the recent efforts by researchers to exploit the full potential of these biological molecules. This review discusses some of these strategies and their success rates in various research conditions. In addition, specific focus was provided to both increasing the market value of cellulases and the innovative strategies required to enhance their production on an industrial scale.


Assuntos
Celulases , Fermentação , Reatores Biológicos/microbiologia , Engenharia Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...